Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265636

RESUMEN

Although ammonium is the preferred nitrogen source for microbes and plants, in animal cells it is a toxic product of nitrogen metabolism that needs to be excreted. Thus, ammonium movement across biological membranes, whether for uptake or excretion, is a fundamental and ubiquitous biological process catalysed by the superfamily of the Amt/Mep/Rh transporters. A remarkable feature of the Amt/Mep/Rh family is that they are ubiquitous and, despite sharing low amino acid sequence identity, are highly structurally conserved. Despite sharing a common structure, these proteins have become involved in a diverse range of physiological process spanning all domains of life, with reports describing their involvement in diverse biological processes being published regularly. In this context, we exhaustively present their range of biological roles across the domains of life and after explore current hypotheses concerning their evolution to help to understand how and why the conserved structure fulfils diverse physiological functions.

2.
Biosci Rep ; 44(1)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38131184

RESUMEN

The exchange of ammonium across cellular membranes is a fundamental process in all domains of life and is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. Remarkably, despite a high structural conservation in all domains of life, these proteins have gained various biological functions during evolution. It is tempting to hypothesise that the physiological functions gained by these proteins may be explained at least in part by differences in the energetics of their translocation mechanisms. Therefore, in this review, we will explore our current knowledge of energetics of the Amt/Mep/Rh family, discuss variations in observations between different organisms, and highlight some technical drawbacks which have hampered effects at mechanistic characterisation. Through the review, we aim to provide a comprehensive overview of current understanding of the mechanism of transport of this unique and extraordinary Amt/Mep/Rh superfamily of ammonium transporters.


Asunto(s)
Compuestos de Amonio , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico
3.
PeerJ ; 11: e15648, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609440

RESUMEN

THAPBI PICT is an open source software pipeline for metabarcoding analysis of Illumina paired-end reads, including cases of multiplexing where more than one amplicon is amplified per DNA sample. Initially a Phytophthora ITS1 Classification Tool (PICT), we demonstrate using worked examples with our own and public data sets how, with appropriate primer settings and a custom database, it can be applied to other amplicons and organisms, and used for reanalysis of existing datasets. The core dataflow of the implementation is (i) data reduction to unique marker sequences, often called amplicon sequence variants (ASVs), (ii) dynamic thresholds for discarding low abundance sequences to remove noise and artifacts (rather than error correction by default), before (iii) classification using a curated reference database. The default classifier assigns a label to each query sequence based on a database match that is either perfect, or a single base pair edit away (substitution, deletion or insertion). Abundance thresholds for inclusion can be set by the user or automatically using per-batch negative or synthetic control samples. Output is designed for practical interpretation by non-specialists and includes a read report (ASVs with classification and counts per sample), sample report (samples with counts per species classification), and a topological graph of ASVs as nodes with short edit distances as edges. Source code available from https://github.com/peterjc/thapbi-pict/ with documentation including installation instructions.


Asunto(s)
Anatomía Regional , Phytophthora , Artefactos , Cultura , Bases de Datos Factuales
4.
Microb Genom ; 9(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37578822

RESUMEN

Carbohydrate active enzymes (CAZymes) are pivotal in biological processes including energy metabolism, cell structure maintenance, signalling, and pathogen recognition. Bioinformatic prediction and mining of CAZymes improves our understanding of these activities and enables discovery of candidates of interest for industrial biotechnology, particularly the processing of organic waste for biofuel production. CAZy (www.cazy.org) is a high-quality, manually curated, and authoritative database of CAZymes that is often the starting point for these analyses. Automated querying and integration of CAZy data with other public datasets would constitute a powerful resource for mining and exploring CAZyme diversity. However, CAZy does not itself provide methods to automate queries, or integrate annotation data from other sources (except by following hyperlinks) to support further analysis. To overcome these limitations we developed cazy_webscraper, a command-line tool that retrieves data from CAZy and other online resources to build a local, shareable and reproducible database that augments and extends the authoritative CAZy database. cazy_webscraper's integration of curated CAZyme annotations with their corresponding protein sequences, up-to-date taxonomy assignments, and protein structure data facilitates automated large-scale and targeted bioinformatic CAZyme family analysis and candidate screening. This tool has found widespread uptake in the community, with over 35 000 downloads (from April 2021 to June 2023). We demonstrate the use and application of cazy_webscraper to: (i) augment, update and correct CAZy database accessions; (ii) explore the taxonomic distribution of CAZymes recorded in CAZy, identifying under-represented taxa and unusual CAZy class distributions; and (iii) investigate three CAZymes having potential biotechnological application for degradation of biomass, but lacking a representative structure in the PDB database. We describe in general how cazy_webscraper facilitates functional, structural and evolutionary studies to aid identification of candidate enzymes for further characterization, and specifically note that CAZy provides supporting evidence for recent expansion of the Auxiliary Activities (AA) CAZy family in eukaryotes, consistent with functions potentially specific to eukaryotic lifestyles.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Bases de Datos Genéticas , Esterasas/química , Esterasas/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Estructura Secundaria de Proteína
5.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994659

RESUMEN

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Asunto(s)
Arabidopsis , Resistencia a la Enfermedad , Especificidad del Huésped , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitología , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitología , Nicotiana/metabolismo , Nicotiana/parasitología , Técnicas del Sistema de Dos Híbridos
6.
Microb Genom ; 8(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35775972

RESUMEN

Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.


Asunto(s)
Actinobacteria , Streptomyces , Actinobacteria/genética , Antibacterianos , Streptomyces/genética
7.
Front Microbiol ; 13: 887310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663905

RESUMEN

Genomics has put prokaryotic rank-based taxonomy on a solid phylogenetic foundation. However, most taxonomic ranks were set long before the advent of DNA sequencing and genomics. In this concept paper, we thus ask the following question: should prokaryotic classification schemes besides the current phylum-to-species ranks be explored, developed, and incorporated into scientific discourse? Could such alternative schemes provide better solutions to the basic need of science and society for which taxonomy was developed, namely, precise and meaningful identification? A neutral genome-similarity based framework is then described that could allow alternative classification schemes to be explored, compared, and translated into each other without having to choose only one as the gold standard. Classification schemes could thus continue to evolve and be selected according to their benefits and based on how well they fulfill the need for prokaryotic identification.

8.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34617878

RESUMEN

The Pectobacteriaceae family of important plant pathogens includes the genus Dickeya. There are currently 12 described species of Dickeya, although some are poorly characterized at the genomic level. Only two genomes of Dickeya paradisiaca, the type strain CFBP 4178T and strain Ech703, have previously been sequenced. Members of this species are mostly of tropical or subtropical origin. During an investigation of strains present in our laboratory collection we sequenced the atypical strain A3967, registered as CFBP 722, isolated from Solanum lycopersicum (tomato) in the South of France in 1965. The genome of strain A3967 shares digital DNA-DNA hybridization and average nucleotide identity (ANI) values of 68 and 96 %, respectively, with the D. paradisiaca type strain CFBP 4178T. However, ANI analysis showed that D. paradisiaca strains are significantly dissimilar to the other Dickeya species, such that less than one third of their genomes align to any other Dickeya genome. On phenotypic, phylogenetic and genomic grounds, we propose a reassignment of D. paradisiaca to the genus level, for which we propose the name Musicola gen. nov., with Musicola paradisiaca as the type species and CFBP 4178T (NCPPB 2511T) as the type strain. Phenotypic analysis showed differences between strain A3967T and CFBP 4178T, such as for the assimilation of melibiose, raffinose and myo-inositol. These results support the description of two novel species, namely Musicola paradisiaca comb. nov. and Musicola keenii sp. nov., with CFBP 4178T (NCPPB 2511T=LMG 2542T) and A3967T (CFBP 8732T=LMG 31880T) as the type strains, respectively.


Asunto(s)
Dickeya , Enterobacteriaceae/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Dickeya/clasificación , Francia , Solanum lycopersicum/microbiología , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Access Microbiol ; 2(9): acmi000143, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195978

RESUMEN

The Clermont PCR method for phylotyping Escherichia coli remains a useful classification scheme even though genome sequencing is now routine, and higher-resolution sequence typing schemes are now available. Relating present-day whole-genome E. coli classifications to legacy phylotyping is essential for harmonizing the historical literature and understanding of this important organism. Therefore, we present EzClermont - a novel in silico Clermont PCR phylotyping tool to enable ready application of this phylotyping scheme to whole-genome assemblies. We evaluate this tool against phylogenomic classifications, and an alternative software implementation of Clermont typing. EzClermont is available as a web app at www.ezclermont.org, and as a command-line tool at https://nickp60.github.io/EzClermont/.

10.
Genomics ; 112(6): 4242-4253, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32663607

RESUMEN

Shiga-toxigenic Escherichia coli (STEC) is often transmitted into food via fresh produce plants, where it can cause disease. To identify early interaction factors for STEC on spinach, a high-throughput positive-selection system was used. A bacterial artificial chromosome (BAC) clone library for isolate Sakai was screened in four successive rounds of short-term (2 h) interaction with spinach roots, and enriched loci identified by microarray. A Bayesian hierarchical model produced 115 CDS credible candidates, comprising seven contiguous genomic regions. Of the two candidate regions selected for functional assessment, the pO157 plasmid-encoded type two secretion system (T2SS) promoted interactions, while a chaperone-usher fimbrial gene cluster (loc6) did not. The T2SS promoted bacterial binding to spinach and appeared to involve the EtpD secretin protein. Furthermore, the T2SS genes, etpD and etpC, were expressed at a plant-relevant temperature of 18 °C, and etpD was expressed in planta by E. coli Sakai on spinach plants.


Asunto(s)
Escherichia coli O157/genética , Interacciones Microbiota-Huesped/genética , Sistemas de Secreción Tipo II/genética , Adhesinas Bacterianas/genética , Adhesión Bacteriana , Cromosomas Artificiales Bacterianos , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/metabolismo , Genes Bacterianos , Genómica , Mutación , Raíces de Plantas/microbiología , Plásmidos/genética , Spinacia oleracea/microbiología , Sistemas de Secreción Tipo II/metabolismo
11.
Data Brief ; 31: 105769, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32551345

RESUMEN

A high-throughput positive-selection approach was taken to generate a dataset of Shigatoxigenic Escherichia coli (STEC) O157:H7 genes enriched in adherence to plant tissue. The approach generates a differential dataset based on BAC clones enriched in the output, after adherence, compared to the inoculum used as the input. A BAC clone library derived from STEC isolate 'Sakai' was used since this isolate is associated with a very large-scale outbreak of human disease from consumption of contaminated fresh produce; white radish sprouts. Spinach was used for the screen since it is associated with STEC outbreaks, and the roots provide a suitable site for bacterial colonisation. Four successive of rounds of Sakai BAC clone selection and amplification were applied for spinach root adherence, in parallel to a non-plant control. Genomic DNA was obtained from a total of 7.17 × 108 cfu/ml of bacteria from the plant treatment and 1.13 × 109 cfu/ml of bacteria from the no-plant control. Relative gene abundance of the output compared to the input pools was obtained using an established E. coli DNA microarray chip for STEC. The dataset enables screening for genes enriched under the treatment condition and informs on genes that may play a role in plant-microbe interactions.

13.
Int J Syst Evol Microbiol ; 70(4): 2440-2448, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32100697

RESUMEN

Pectobacterium strains isolated from potato stems in Finland, Poland and the Netherlands were subjected to polyphasic analyses to characterize their genomic and phenotypic features. Phylogenetic analysis based on 382 core proteins showed that the isolates clustered closest to Pectobacterium polaris but could be divided into two clades. Average nucleotide identity (ANI) analysis revealed that the isolates in one of the clades included the P. polaris type strain, whereas the second clade was at the border of the species P. polaris with a 96 % ANI value. In silico genome-to-genome comparisons between the isolates revealed values below 70%, patristic distances based on 1294 core proteins were at the level observed between closely related Pectobacterium species, and the two groups of bacteria differed in genome size, G+C content and results of amplified fragment length polymorphism and Biolog analyses. Comparisons between the genomes revealed that the isolates of the atypical group contained SPI-1-type Type III secretion island and genes coding for proteins known for toxic effects on nematodes or insects, and lacked many genes coding for previously characterized virulence determinants affecting rotting of plant tissue by soft rot bacteria. Furthermore, the atypical isolates could be differentiated from P. polaris by their low virulence, production of antibacterial metabolites and a citrate-negative phenotype. Based on the results of a polyphasic approach including genome-to-genome comparisons, biochemical and virulence assays, presented in this report, we propose delineation of the atypical isolates as a novel species Pectobacterium parvum, for which the isolate s0421T (CFBP 8630T=LMG 30828T) is suggested as a type strain.


Asunto(s)
Pectobacterium/clasificación , Filogenia , Solanum tuberosum/microbiología , Sistemas de Secreción Tipo III , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Finlandia , Países Bajos , Pectobacterium/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Tallos de la Planta/microbiología , Polonia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Virulencia
14.
Metabolomics ; 15(10): 125, 2019 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-31522294

RESUMEN

BACKGROUND: A lack of transparency and reporting standards in the scientific community has led to increasing and widespread concerns relating to reproduction and integrity of results. As an omics science, which generates vast amounts of data and relies heavily on data science for deriving biological meaning, metabolomics is highly vulnerable to irreproducibility. The metabolomics community has made substantial efforts to align with FAIR data standards by promoting open data formats, data repositories, online spectral libraries, and metabolite databases. Open data analysis platforms also exist; however, they tend to be inflexible and rely on the user to adequately report their methods and results. To enable FAIR data science in metabolomics, methods and results need to be transparently disseminated in a manner that is rapid, reusable, and fully integrated with the published work. To ensure broad use within the community such a framework also needs to be inclusive and intuitive for both computational novices and experts alike. AIM OF REVIEW: To encourage metabolomics researchers from all backgrounds to take control of their own data science, mould it to their personal requirements, and enthusiastically share resources through open science. KEY SCIENTIFIC CONCEPTS OF REVIEW: This tutorial introduces the concept of interactive web-based computational laboratory notebooks. The reader is guided through a set of experiential tutorials specifically targeted at metabolomics researchers, based around the Jupyter Notebook web application, GitHub data repository, and Binder cloud computing platform.


Asunto(s)
Nube Computacional , Ciencia de los Datos , Metabolómica , Programas Informáticos , Animales , Humanos
15.
PeerJ ; 7: e6931, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143546

RESUMEN

Forests and woodlands worldwide are being severely impacted by invasive Phytophthora species, with initial outbreaks in some cases occurring on host trees located in public parks and gardens. These highly disturbed sites with diverse planting practices may indeed act as harbours for invasive Phytophthora pathogens which are particularly well adapted to surviving in soil. High throughput Illumina sequencing was used to analyse Phytophthora species diversity in soil samples collected from 14 public garden/amenity woodland sites in northern Britain. Bioinformatic analyses revealed some limitations to using internal transcribed spacer as the barcode region; namely reporting of false positives and ambiguous species matches. Taking this into account, 35 distinct sequences were amplified across the sites, corresponding to 23 known Phytophthora species as well as twelve oomycete sequences with no match to any known Phytophthora species. Phytophthora pseudosyringae and P. austrocedri, both of which cause serious damage to trees and are regarded as fairly recent introductions to Britain, were the two most abundant Phytophthora species detected. There was no evidence that any of the detected Phytophthora species were more associated with any one type of host, healthy or otherwise. This study has demonstrated the ubiquity and diversity of Phytophthora species endemic in highly managed, extensively planted soil environments in Britain. Suggested improvements to the methodology and the practical implications of the findings in terms of mitigating Phytophthora spread and impact are discussed.

16.
Front Microbiol ; 9: 1340, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997584

RESUMEN

Escherichia coli is commonly viewed as a gastrointestinal commensal or pathogen although an increasing body of evidence suggests that it can persist in non-host environments as well. Curli are a major component of biofilm in many enteric bacteria including E. coli and are important for adherence to different biotic and abiotic surfaces. In this study we investigated curli production in a unique collection of soil-persistent E. coli isolates and examined the role of curli formation in environmental persistence. Although most soil-persistent E. coli were curli-positive, 10% of isolates were curli-negative (17 out of 170). Curli-producing E. coli (COB583, COB585, and BW25113) displayed significantly more attachment to quartz sand than the curli-negative strains. Long-term soil survival experiments indicated that curli production was not required for long-term survival in live soil (over 110 days), as a curli-negative mutant BW25113ΔcsgB had similar survival compared to wild type BW25113. Mutations in two genes associated with c-di-GMP metabolism, dgcE and pdeR, correlated with loss of curli in eight soil-persistent strains, although this did not significantly impair their survival in soil compared to curli-positive strains. Overall, the data indicate that curli-deficient and biofilm-defective strains, that also have a defect in attachment to quartz sand, are able to reside in soil for long periods of time thus pointing to the possibility that niches may exist in the soil that can support long-term survival independently of biofilm formation.

17.
Nucleic Acids Res ; 46(11): e68, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29608703

RESUMEN

The vast majority of bacterial genome sequencing has been performed using Illumina short reads. Because of the inherent difficulty of resolving repeated regions with short reads alone, only ∼10% of sequencing projects have resulted in a closed genome. The most common repeated regions are those coding for ribosomal operons (rDNAs), which occur in a bacterial genome between 1 and 15 times, and are typically used as sequence markers to classify and identify bacteria. Here, we exploit the genomic context in which rDNAs occur across taxa to improve assembly of these regions relative to de novo sequencing by using the conserved nature of rDNAs across taxa and the uniqueness of their flanking regions within a genome. We describe a method to construct targeted pseudocontigs generated by iteratively assembling reads that map to a reference genome's rDNAs. These pseudocontigs are then used to more accurately assemble the newly sequenced chromosome. We show that this method, implemented as riboSeed, correctly bridges across adjacent contigs in bacterial genome assembly and, when used in conjunction with other genome polishing tools, can assist in closure of a genome.


Asunto(s)
ADN Bacteriano/genética , ADN Ribosómico/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Klebsiella pneumoniae/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Mapeo Cromosómico/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos
18.
Front Microbiol ; 8: 2181, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29167663

RESUMEN

Some eukaryotes are able to gain access to well-protected carbon sources in plant biomass by exploiting microorganisms in the environment or harbored in their digestive system. One is the land pulmonate Arion ater, which takes advantage of a gut microbial consortium that can break down the widely available, but difficult to digest, carbohydrate polymers in lignocellulose, enabling them to digest a broad range of fresh and partially degraded plant material efficiently. This ability is considered one of the major factors that have enabled A. ater to become one of the most widespread plant pest species in Western Europe and North America. Using metagenomic techniques we have characterized the bacterial diversity and functional capability of the gut microbiome of this notorious agricultural pest. Analysis of gut metagenomic community sequences identified abundant populations of known lignocellulose-degrading bacteria, along with well-characterized bacterial plant pathogens. This also revealed a repertoire of more than 3,383 carbohydrate active enzymes (CAZymes) including multiple enzymes associated with lignin degradation, demonstrating a microbial consortium capable of degradation of all components of lignocellulose. This would allow A. ater to make extensive use of plant biomass as a source of nutrients through exploitation of the enzymatic capabilities of the gut microbial consortia. From this metagenome assembly we also demonstrate the successful amplification of multiple predicted gene sequences from metagenomic DNA subjected to whole genome amplification and expression of functional proteins, facilitating the low cost acquisition and biochemical testing of the many thousands of novel genes identified in metagenomics studies. These findings demonstrate the importance of studying Gastropod microbial communities. Firstly, with respect to understanding links between feeding and evolutionary success and, secondly, as sources of novel enzymes with biotechnological potential, such as, CAZYmes that could be used in the production of biofuel.

19.
Methods Mol Biol ; 1302: 1-16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25981242

RESUMEN

Blackleg and soft rot of potato, caused by Pectobacterium and Dickeya spp., are major production constraints in many potato-growing regions of the world. Despite advances in our understanding of the causative organisms, disease epidemiology, and control, blackleg remains the principal cause of down-grading and rejection of potato seed in classification schemes across Northern Europe and many other parts of the world. Although symptom recognition is relatively straightforward and is applied universally in seed classification schemes, attributing disease to a specific organism is problematic and can only be achieved through the use of diagnostics. Similarly as disease spread is largely through the movement of asymptomatically infected seed tubers and, possibly in the case of Dickeya spp., irrigation waters, accurate and sensitive diagnostics are a prerequisite for detection. This chapter describes the diagnostic pathway that can be applied to identify the principal potato pathogens within the genera Pectobacterium and Dickeya.


Asunto(s)
ADN Bacteriano/análisis , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Pectobacterium/genética , Pectobacterium/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Solanum tuberosum/microbiología , ADN Bacteriano/genética , Enterobacteriaceae/patogenicidad , Pectobacterium/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Tubérculos de la Planta/química , Tubérculos de la Planta/microbiología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...